计算机图形技术的最新进展可以使汽车驾驶环境更现实。它们使自动驾驶汽车模拟器(例如DeepGTA-V和Carla(学习采取行动))能够生成大量的合成数据,这些数据可以补充现有的现实世界数据集中,以培训自动驾驶汽车感知。此外,由于自动驾驶汽车模拟器可以完全控制环境,因此它们可以产生危险的驾驶场景,而现实世界中数据集缺乏恶劣天气和事故情况。在本文中,我们将证明将从现实世界收集的数据与模拟世界中生成的数据相结合的有效性,以训练对象检测和本地化任务的感知系统。我们还将提出一个多层次的深度学习感知框架,旨在效仿人类的学习经验,其中在某个领域中学习了一系列从简单到更困难的任务。自动驾驶汽车感知器可以从易于驱动的方案中学习,以通过模拟软件定制的更具挑战性的方案。
translated by 谷歌翻译
心电图(ECG)是一种简单的非侵入性措施,用于识别与心律失常相关的问题,例如称为心律失常的不规则心跳。尽管人工智能和机器学习被用于广泛的与医疗保健相关的应用程序和数据集中,但近年来已经提出了许多使用深度学习方法的心律失常分类器。但是,可以从中构建和评估机器学习模型的可用数据集的尺寸通常很小,并且缺乏通知的公共ECG数据集很明显。在本文中,我们提出了一个深入的转移学习框架,旨在在小型培训数据集上执行分类。提出的方法是根据AAMI EC57标准,用MIT-BIH心律失常数据集微调通用图像分类器RESNET-18。本文进一步研究了许多现有的深度学习模型,这些模型未能避免根据AAMI建议泄漏数据。我们比较不同的数据拆分方法如何影响模型性能。这项比较研究表明,在使用包括MIT-BIH心律失常数据集在内时,心律不齐分类的未来工作应遵循AAMI EC57标准。
translated by 谷歌翻译
数据科学任务可以被视为了解数据的感觉或测试关于它的假设。从数据推断的结论可以极大地指导我们做出信息做出决定。大数据使我们能够与机器学习结合执行无数的预测任务,例如鉴定患有某种疾病的高风险患者并采取可预防措施。然而,医疗保健从业者不仅仅是仅仅预测的内容 - 它们也对输入特征和临床结果之间的原因关系感兴趣。了解这些关系将有助于医生治疗患者并有效降低风险。通常通过随机对照试验鉴定因果关系。当科学家和研究人员转向观察研究并试图吸引推论时,这种试验通常是不可行的。然而,观察性研究也可能受到选择和/或混淆偏差的影响,这可能导致错误的因果结论。在本章中,我们将尝试突出传统机器学习和统计方法中可能出现的一些缺点,以分析观察数据,特别是在医疗保健数据分析域中。我们将讨论因果化推理和方法,以发现医疗领域的观测研究原因。此外,我们将展示因果推断在解决某些普通机器学习问题等中的应用,例如缺少数据和模型可运输性。最后,我们将讨论将加强学习与因果关系相结合的可能性,作为反击偏见的一种方式。
translated by 谷歌翻译
The cooperation of a human pilot with an autonomous agent during flight control realizes parallel autonomy. A parallel-autonomous system acts as a guardian that significantly enhances the robustness and safety of flight operations in challenging circumstances. Here, we propose an air-guardian concept that facilitates cooperation between an artificial pilot agent and a parallel end-to-end neural control system. Our vision-based air-guardian system combines a causal continuous-depth neural network model with a cooperation layer to enable parallel autonomy between a pilot agent and a control system based on perceived differences in their attention profile. The attention profiles are obtained by computing the networks' saliency maps (feature importance) through the VisualBackProp algorithm. The guardian agent is trained via reinforcement learning in a fixed-wing aircraft simulated environment. When the attention profile of the pilot and guardian agents align, the pilot makes control decisions. If the attention map of the pilot and the guardian do not align, the air-guardian makes interventions and takes over the control of the aircraft. We show that our attention-based air-guardian system can balance the trade-off between its level of involvement in the flight and the pilot's expertise and attention. We demonstrate the effectivness of our methods in simulated flight scenarios with a fixed-wing aircraft and on a real drone platform.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
This work presents an actuation framework for a bioinspired flapping drone called Aerobat. This drone, capable of producing dynamically versatile wing conformations, possesses 14 body joints and is tail-less. Therefore, in our robot, unlike mainstream flapping wing designs that are open-loop stable and have no pronounced morphing characteristics, the actuation, and closed-loop feedback design can pose significant challenges. We propose a framework based on integrating mechanical intelligence and control. In this design framework, small adjustments led by several tiny low-power actuators called primers can yield significant flight control roles owing to the robot's computational structures. Since they are incredibly lightweight, the system can host the primers in large numbers. In this work, we aim to show the feasibility of joint's motion regulation in Aerobat's untethered flights.
translated by 谷歌翻译
Flying animals, such as bats, fly through their fluidic environment as they create air jets and form wake structures downstream of their flight path. Bats, in particular, dynamically morph their highly flexible and dexterous armwing to manipulate their fluidic environment which is key to their agility and flight efficiency. This paper presents the theoretical and numerical analysis of the wake-structure-based gait design inspired by bat flight for flapping robots using the notion of reduced-order models and unsteady aerodynamic model incorporating Wagner function. The objective of this paper is to introduce the notion of gait design for flapping robots by systematically searching the design space in the context of optimization. The solution found using our gait design framework was used to design and test a flapping robot.
translated by 谷歌翻译
Machine reading comprehension (MRC) is a long-standing topic in natural language processing (NLP). The MRC task aims to answer a question based on the given context. Recently studies focus on multi-hop MRC which is a more challenging extension of MRC, which to answer a question some disjoint pieces of information across the context are required. Due to the complexity and importance of multi-hop MRC, a large number of studies have been focused on this topic in recent years, therefore, it is necessary and worth reviewing the related literature. This study aims to investigate recent advances in the multi-hop MRC approaches based on 31 studies from 2018 to 2022. In this regard, first, the multi-hop MRC problem definition will be introduced, then 31 models will be reviewed in detail with a strong focus on their multi-hop aspects. They also will be categorized based on their main techniques. Finally, a fine-grain comprehensive comparison of the models and techniques will be presented.
translated by 谷歌翻译
Multi-hop Machine reading comprehension is a challenging task with aim of answering a question based on disjoint pieces of information across the different passages. The evaluation metrics and datasets are a vital part of multi-hop MRC because it is not possible to train and evaluate models without them, also, the proposed challenges by datasets often are an important motivation for improving the existing models. Due to increasing attention to this field, it is necessary and worth reviewing them in detail. This study aims to present a comprehensive survey on recent advances in multi-hop MRC evaluation metrics and datasets. In this regard, first, the multi-hop MRC problem definition will be presented, then the evaluation metrics based on their multi-hop aspect will be investigated. Also, 15 multi-hop datasets have been reviewed in detail from 2017 to 2022, and a comprehensive analysis has been prepared at the end. Finally, open issues in this field have been discussed.
translated by 谷歌翻译
With the progress of sensor technology in wearables, the collection and analysis of PPG signals are gaining more interest. Using Machine Learning, the cardiac rhythm corresponding to PPG signals can be used to predict different tasks such as activity recognition, sleep stage detection, or more general health status. However, supervised learning is often limited by the amount of available labeled data, which is typically expensive to obtain. To address this problem, we propose a Self-Supervised Learning (SSL) method with a pretext task of signal reconstruction to learn an informative generalized PPG representation. The performance of the proposed SSL framework is compared with two fully supervised baselines. The results show that in a very limited label data setting (10 samples per class or less), using SSL is beneficial, and a simple classifier trained on SSL-learned representations outperforms fully supervised deep neural networks. However, the results reveal that the SSL-learned representations are too focused on encoding the subjects. Unfortunately, there is high inter-subject variability in the SSL-learned representations, which makes working with this data more challenging when labeled data is scarce. The high inter-subject variability suggests that there is still room for improvements in learning representations. In general, the results suggest that SSL may pave the way for the broader use of machine learning models on PPG data in label-scarce regimes.
translated by 谷歌翻译